skip to main content


Search for: All records

Creators/Authors contains: "Rebecchi, Lorena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Water unavailability is an abiotic stress causing unfavourable conditions for life. Nevertheless, some animals evolved anhydrobiosis, a strategy allowing for the reversible organism dehydration and suspension of metabolism as a direct response to habitat desiccation. Anhydrobiotic animals undergo biochemical changes synthesizing bioprotectants to help combat desiccation stresses. One stress is the generation of reactive oxygen species (ROS). In this study, the eutardigrade Paramacrobiotus spatialis was used to investigate the occurrence of ROS associated with the desiccation process. We observed that the production of ROS significantly increases as a function of time spent in anhydrobiosis and represents a direct demonstration of oxidative stress in tardigrades. The degree of involvement of bioprotectants, including those combating ROS, in the P. spatialis was evaluated by perturbing their gene functions using RNA interference and assessing the successful recovery of animals after desiccation/rehydration. Targeting the glutathione peroxidase gene compromised survival during drying and rehydration, providing evidence for the role of the gene in desiccation tolerance. Targeting genes encoding glutathione reductase and catalase indicated that these molecules play roles during rehydration. Our study also confirms the involvement of aquaporins 3 and 10 during rehydration. Therefore, desiccation tolerance depends on the synergistic action of many different molecules working together. 
    more » « less
  2. null (Ed.)
  3. Abstract Aim

    The long history of isolation of the Antarctic continent, coupled with the harsh ecological conditions of freezing temperatures, could affect the patterns of genetic diversity in the organisms living there. We aim (a) to test whether such pattern can be seen in a mitochondrial marker of bdelloid rotifers, a group of microscopic aquatic and limno‐terrestrial animals and (b) to speculate on the potential mechanisms driving the pattern.

    Location

    Focus on Antarctica.

    Taxon

    Rotifera Bdelloidea.

    Methods

    We analysed different metrics of genetic diversity, also spatially explicit ones, including number of haplotypes, accumulation curves, genetic distances, time to the most recent common ancestor, number of independently evolving units from DNA taxonomy, strength of the correlation between geographical and genetic distances, population genetics neutrality and differentiation indices, potential historical processes, obtained from an extensive sample of cytochrome oxidase subunit I (COI) sequences obtained from bdelloid rotifers. We included 2242 individuals from 23 species in a comparison between Antarctic and non‐Antarctic taxa, correcting for sample size directly in the analyses and then by confirming the results also using only a restricted dataset of nine well‐sampled species.

    Results

    Antarctic species had consistently lower genetic diversity and potential younger relative age than non‐Antarctic species, even if they were similar in sample size, geographical extent, neutrality and differentiation indices, and correlation between genetic and geographical distances.

    Main conclusions

    The extensive survey of genetic diversity in one mitochondrial marker in Antarctic bdelloids supports previous suggestions from other organisms that the origin and maintenance of terrestrial Antarctic fauna are different from those of other continents. Such differences could be speculated to be due, in the case of bdelloid rotifers, to the more recent origin of the species living there in comparison to non‐Antarctic species.

     
    more » « less